perm filename NEWTP.MK[BMP,SYS]1 blob
sn#744782 filedate 1984-03-09 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00007 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 αx subj bring tp to sail
C00008 00003 αx subj hard copy
C00011 00004 compiling at sail see THM.ALL
C00012 00005 THM.EXE may be created by typing:
C00013 00006 α⊃ to get THM
C00017 00007 α⊃ to get THM
C00019 ENDMK
C⊗;
;αx subj bring tp to sail
retr AUX:<CL.THM>Code.Tags
retr -This-.-Dir-← aux:<cl.thm>-This-.-Dir-
retr -READ-.-THIS-←aux:<cl.thm>-READ-.-THIS-
retr AUX:<CL.THM>Thm.All
retr aux:<cl.thm>COMPLR.INI
retr thmlsp.ini←aux:<cl.thm>lisp.ini
retr aux:<cl.thm>basis.lisp
retr aux:<cl.thm>crock1.lsp
retr aux:<cl.thm>genfact.lisp
retr aux:<cl.thm>crock2.lsp
retr aux:<cl.thm>events.lisp
retr aux:<cl.thm>crock3.lsp
retr code-1-a.lisp←aux:<cl.thm>code-1-a.lisp
retr code-b-d.lisp←aux:<cl.thm>code-b-d.lisp
retr code-e-m.lisp←aux:<cl.thm>code-e-m.lisp
retr code-n-r.lisp←aux:<cl.thm>code-n-r.lisp
retr code-s-z.lisp←aux:<cl.thm>code-s-z.lisp
retr aux:<cl.thm>io.lisp
retr aux:<cl.thm>ppr.lisp
retr make-thm.lisp←aux:<cl.thm>make-thm.lisp
retr AUX:<CL.PROOFS>XXXS.LISP
retr aux:<cl.thm>code.doc
retr <CL.TP2>CODE.DOC
retr <CL.TP2>CODE.TXT
;retr AUX:<CL.PROOFS>PROVEALL.LIB
;retr AUX:<CL.PROOFS>PROVEALL.LISP
;retr BOOT-STRAP.LIB←AUX:<CL.PROOFS>BOOT-STRAP.LIB
;< File not accessable. No such filename
retr aux:<cl.thm>code.doc
Writing CODE.DOC[BMP,SYS]
< ASCII retrieve of AUX:<CL.THM>CODE.DOC.5 started.
< Transfer completed.
Input complete: 9299 bytes transferred (10.8 Kbaud)
*
retr oldcod.doc←aux:<CL.TP2>CODE.DOC
< ASCII retrieve of AUX:<CL.TP2>CODE.DOC.7907 started.
< Transfer completed.
Input complete: 132941 bytes transferred (8.2 Kbaud)
*
retr aux:<CL.TP2>CODE.TXT
Writing CODE.TXT[BMP,SYS]
< ASCII retrieve of AUX:<CL.TP2>CODE.TXT.2 started.
< Transfer completed.
Input complete: 5630 bytes transferred (6.5 Kbaud)
*
;αx subj hard copy
boise Code.Tag
boise ↓-THIS-↓.↓-DIR-↓
boise ↓-READ-↓.↓-THIS-↓
boise THM.ALL
boise COMPLR.INI
boise lisp.ini
boise basis.lisp
boise CROCK1.LSP
boise GENFAC.LIS
boise CROCK2.LSP
boise EVENTS.LIS
boise CROCK3.LSP
boise ↓CODE-1-A↓.LISP
boise ↓CODE-B-D↓.LISP
boise ↓CODE-E-M↓.LISP
boise ↓CODE-N-R↓.LISP
boise ↓CODE-S-Z↓.LISP
boise IO.LIS
boise PPR.LIS
boise ↓MAKE-THM↓.LISP
----
boise PROVEALL.LIB
boise PROVEALL.LISP
boise XXXS.LISP
boise ↓BOOT-STRAP↓.LIB
boise ↓BOOT-STRAP↓.LISP
boise code.doc[bmp,sys]
boise oldcod.doc[bmp,sys]
boise CODE.TXT[bmp,sys]
;compiling at sail see THM.ALL
;αx subj
; complr.ini sets base, and removes match-macro autoload
r bcomplr
;CD AUX:<CL.THM>
;PS:<MACLISP>COMPLR
BASIS.LISP(u,w)
;; loads basis.fasl
CROCK1.LSP(u)
GENFACT.LISP(u,w)
;; loads genfact.fasl
CROCK2.LSP(u)
EVENTS.LISP(u,w)
;; loads events.fasl
CROCK3.LSP(u)
CODE-1-A.LISP(u,w)
CODE-B-D.LISP(u,w)
CODE-E-M.LISP(u,w)
CODE-N-R.LISP(u,w)
CODE-S-Z.LISP(u,w)
IO.LISP(u,w)
PPR.LISP(u,w)
MAKE-THM.LISP(u,w)
;TOPS-20-EMACS-TO-THM.LISP
THM.EXE may be created by typing:
@MACLISP AUX:<CL.THM>LISP.INI
*(MAKE-THM)
@SAVE THM.EXE 0 777
POOR is the online file for the current user's manual.
XXXS.LISP contains our standard benchmark.
do mkthm
;;α⊃ to get THM
In checking out the change to NOTE-LIB, I suggest that, after making the
change, you perform:
(BOOT-STRAP)
[ 4.088 0.0 ]
GROUND-ZERO
(MAKE-LIB "FOO")
(#FILE-OUT-|DSK:FOO.LIB[BM,CLT]|-71774 #FILE-OUT-|DSK:FOO.LIS[BM,CLT]|-71770)
(NOTE-LIB "FOO.LIB" "FOO.LISP")
#FILE-IN-|DSK:FOO.LIB[BM,CLT]|-71764
(ASSOC-OF-APPEND)
January 15, 1984 21:23:2
(DEFN APPEND
(X Y)
(IF (LISTP X)
(CONS (CAR X) (APPEND (CDR X) Y))
Y))
Linear arithmetic and the lemma CDR-LESSP inform us that the
measure (COUNT X) decreases according to the well-founded relation
LESSP in each recursive call. Hence, APPEND is accepted under the
principle of definition. Observe that:
(OR (LISTP (APPEND X Y))
(EQUAL (APPEND X Y) Y))
is a theorem.
[ 1.34599991 0.06299998 ]
APPEND
(PROVE-LEMMA ASSOC-OF-APPEND
(REWRITE)
(EQUAL (APPEND (APPEND A B) C)
(APPEND A (APPEND B C))))
Give the conjecture the name *1.
Let us appeal to the induction principle. The recursive terms
in the conjecture suggest three inductions. They merge into two
likely candidate inductions. However, only one is unflawed. We will
induct according to the following scheme:
(AND (IMPLIES (AND (LISTP A) (P (CDR A) B C))
(P A B C))
(IMPLIES (NOT (LISTP A)) (P A B C))).
Linear arithmetic and the lemma CDR-LESSP inform us that the measure
(COUNT A) decreases according to the well-founded relation LESSP in
each induction step of the scheme. The above induction scheme
generates two new conjectures:
Case 2. (IMPLIES (AND (LISTP A)
(EQUAL (APPEND (APPEND (CDR A) B) C)
(APPEND (CDR A) (APPEND B C))))
(EQUAL (APPEND (APPEND A B) C)
(APPEND A (APPEND B C)))),
which simplifies, applying the lemmas CDR-CONS and CAR-CONS, and
unfolding APPEND, to:
T.
Case 1. (IMPLIES (NOT (LISTP A))
(EQUAL (APPEND (APPEND A B) C)
(APPEND A (APPEND B C)))),
which simplifies, expanding the definition of APPEND, to:
T.
That finishes the proof of *1. Q.E.D.
[ 0.773999915 0.208000056 ]
ASSOC-OF-APPEND
(APPEND ASSOC-OF-APPEND)
;;α⊃ to get THM
boot-strap
proveall 1hr
rsa 45min
wilson